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ABSTRACT 

The two point correlation function for the quantum nonlinear Schriidinger (6- 

function gas) model is studied. An infinite series representation for this function is 

derived using the quantum inverse scattering formalism. For the case of zero 

temperature, the infinite coupling (c + CO) result of Jimbo, Miwa, M&i and Sato is 

extended to give an exact expression for the order l/c correction to the two point 

function in terms of a Painleve’ transcendent of the fifth kind. 
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The theory of completely integrable quantum systems encompasses a wide 

class of exactly soluble models in statistical mechanics and quantum field theory. 

Important advances have been made in the past few years, both in the application 

of Bethe ansatz methods to new models and in the understanding of the algebraic 

structure which underlies Bethels ansatz and its connection with the classical 

method of inverse scattering.’ In spite of these developments, one problem of 

fundamental importance remains largely unsolved--the determination of Green’s 

functions for general integrable systems. Progress on this problem has been mostly 

limited to certain special cases for which the algebraic structure is that of a free 

fermion theory (e.g. the 2-D Ising model, 2-4 the X-Y spin chain,4 and the impene- 

trable Bose gas 4-8). Th e more general problem of Green’s functions for Bethe’s 

ansatz models is not well understood. In this note we describe some new results 

which constitute a step toward the resolution of this problem. 

The model we consider is the quantum nonlinear Schrodinger (delta-function 

gas) model described by the Hamil tonian H = / dx 
r 

8.4, *a X9 + c@*$I*$$ 1 where 

e(x) is a canonical nonrelativistic boson field. For the case c = 03, the Green’s 

functions have been extensively studied. 5-8 In the present work, we study the 

finite c two-point function G(x) by considering its expansion for large c: 

G(x) s G(')(x) + 1 G(l)(x) + 0 
C 

. (1) 

Our main result is an exact closed form expression for the 0(1/c) term G (1) (x), 

which like the c = 0) case is given in terms of Painlev6 transcendents. 

Our procedure for studying Green’s functions employs the quantum inverse 

formalismg-ll and particularly the operator Gel’fand-Levitan transform. 11-13 

Here we will outline the main elements of the calculation. Detailed proofs will be 
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presented elsewhere. The quantized reflection coefficient operators R*(k) and R(k) 

are defined via the Zakharov-Shabat eigenvalue problem. [We follow essentially 

the notation of Refs. 10 and 12. I The Gel’fand-Levitan transform expresses the 

local field as an operator functional of R* and R, which may be written as an 

infinite series: 

@(X)=joJip)($2) gN(pi9 ki, x)R*(pl)...R*(pN)R(kN)...R(kO) (2) 

where gN(pi, ki, x) is given in Refs. 12 and 13. A normal ordered expression for the 

operator product $*(x)@(y) is obtained by the following reordering theorem: For 

x > y, @*(x)@(y) is obtained in normal ordered form by writing the series analogous 

to (2) for ,P*(x) and then inserting $(y) between the R*‘s and R’s in each term (i.e. 

each term will contain an expression of the form R*(pO)...R*(pN)Q(y)R(kN)...R(kl)). 

Expanding 4(y) then gives a normal ordered double series for C$ *(x)$(y). Such a 

result was conjectured by Honerkamp 15 on the basis of low order calculations. We 

have constructed a proof to all orders which utilizes the analytic properties of the 

commutator [ R(k), $(y) 1 discussed in Ref. 12. Thus we have an operator series of 

the form 

s 

FN(Pi, ki; x3 Y) 
N=O i=O j=O 

X R*(pO)...R*(pN)R(kN)“*R(kO) (3) 

where FN is a sum of products of the gj’s, j2 N. 
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With the above reordering theorem the finite temperature Green’s function 

GB,U lx - y) = Tr 1 @*(x)$(y)e-B(H-UN) 1 
Tr e-B(H-uN) (4) 

may be computed using precisely the same technique as in our previous derivation 

of the thermodynamic properties of the system, 14 the latter being equivalent to 

computing the zero separation correlation function G 8, 1-I(O). In this way, it may be 

shown that to all orders, the B and v dependence of G8 1-1 can be isolated in terms 
, 

of single particle functions c(k), yielding a formula 

GB u(x-Y) = i 9 
N=O s 

N 

II 6 (ki)z 1 iN(kO...kN; x, y) 
i=O 

(5) 

where the functions f N are independent of B and u . One can actually derive 

several such representations for G 
1391.1’ 

In the form suggested by Honerkamp, 15i is 

just the density function p(k) defined by Yang and Yang. 16 We have found another 

representation of the form (5) for which F(k) = E e BE:(k) -1 + 11 where c(k) is the 

function of Yang and Yang which describes the particle-hole excitation spectrum. 

This latter representation has two main advantages. One is that each function fN 

in (5) is obtained directly from the corresponding function FN in (3), rather than 

from the first N + 1 functions F o, Fl...FN as is the case for the p(k) expansion. 

The other advantage is that the zero temperature (8 + a) limit of 1 e Bdk) + 11-’ - IS 

a simple unit step function with support between -kF and k F (kF = Fermi 

momentum). The zero temperature Green’s function thus obtains the form 

G(x - y) = ,To S:‘r h 2-j $ko--k~; X, Y) . (6) 

F 
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The prescription for determining the function ?N from the function FN in Eq. (3) 

involves first symmetrizing the integrand and then setting pi = ki + niq, taking the 

limit q + 0 and retaining only those terms which are nonsingular when any subset of 

the nils is set equal to zero (e.g. terms which involve factors like (ni/nj), i f j, are 

discarded). A detailed discussion of Eq. (5) and how it is derived for both 

c (k) = p(k) and for b(k) = [e BE(k) + 11 -’ will be given elsewhere. 

Equation (6) is the most explicit form we have been able to find for the full 

zero temperature correlation function. However, for the first few terms in a large 

c expansion, the analysis may be carried much further. Upon symmetrization of 

the operator expression (3), the c+ 03 limit may be taken straightforwardly (c.f. 

Ref. 13). In this limit, Eq. (6) gives 

G(O) = -j. ($(I; f$..$$ J ’ dZl...dZN gN(x, y, t, ;) 

Y 

(7) 

where gN is the determinant of an (N + 1) x (N + 1) matrix $3 . . = exp -iki(xi - yj), 
11 

i,j = 0,l ,*=*,N, with x0 = x9 y, = y and xi = yi = zi, i = l,...,N. For the leading l/c 

correction we obtain the new result 

G(l) = 2kF (0) -y G + il (# /.I; 2 . ..2/- ’ dtl...dzN 

Y 

(8) 

By performing the k integrations and introducing the scaled variable t = kF(x - y) it 

is possible to express these results in terms of an integral kernel K(u, v) = 

sin(u - v)/(u - v) acting on the interval 10, t 1. Let us define quantities R(t, X) and 



R(t, A) = XK(0, t) + A* f ‘dz K(0, z)K(z, t) + . . . 
JO 

D1(t, X) = xK(O, t) - X2 s t K(O, t) HO, 2) 
dz 

! 
+ ,.. 

0 I&, t) Kb, z> 
(JO) 

(9) 
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Dl(t, h) as the usual resolvent kernel and first Fredholm minor but with their 

arguments evaluated at the end points, i.e.: 

With these definitions we easily recover the result of Schultz’ and Lenard’ for the 

infinite c case: G (0) = (kF/2)Dl(t, X = ~/IT). After some manipulation it turns out 

that the l/c correction G (‘I may also be expressed in terms of the quantities (9) 

and (10) 

G(1) 2kF 
G(o) =TI l+ 1 ( 

a2in R aIn R aIn R 
atah - YEY3T - 1 ( 

a21n D1 alnD1 alriD, 

at - at ax u 
. (11) 

h =2/lT 

The work of Jimbo, Miwa, M&i and Sato8 has shown that the quantities (9) 

and (10) may be written in terms of Painlevg transcendents. 17 For our purposes we 

may summarize their elegant results as follows. Let us define a function 6(t, h) by 

the differential equation 

$1’ = [ (cpJ2 - 1 lcot $I + (1 - @‘j/t (12) 

with boundary condition $ J‘ t - At2 as t + 0, where the prime in eq. (12) denotes 

differentiation with respect to t. [The function $(t, X) is related to y(t, X) of Ref. 

8, Eq. (7.98) by y = e -2i@ ; in terms of y the eq. (12) is a Painlev; equation of the 

fifth kind. 1 Then the resolvent (9) and Fredholm minor (10) may be expressed as 
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R = l-t)’ 
2sin 4 (13) 

aln D1 
at . (14) 

Since Dl(t, X) = X at t = 0, these equations completely specify R(t, X) and Dl(t, X) 

and hence the functions G (0) and G(l) * in terms of the differential equation and 

boundary condition (12). 

Using these results it is a trivial exercise to write down the short distance 

behaviors of G(O) and G(l). Here we will concentrate on their long distance 

properties, for which we need the large t behavior of the solutions to (12). For 

A > l/~ one finds that this is of the form 

$(t,X) = t+tO+kInt+O(i) (15) 

where to and k depend on X. Using the symbolic manipulation program MACSYMA 

we have extended this asymptotic expansion through order l/t6. Inserting this 

expansion into (14) and integrating we obtain 

InD (t A) = kt+i(k2 l)Int+B(X)+O(‘) l’-2- T (16) 

where g(X) is an integration constant. To date we have only been able to investi- 

gate the functions k(X), t,(x) and B(X) by numerical integration of the differential 

equation (12), though we feel that an analytic solution should be possible using 

techniques similar to those of Ref. 18. In any case we have concluded that k(X) is 

given by k(A) = - $ ln (~TX - 1) and that if to and B are regarded as functions of k 
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rather than of h then t0 - IT/~ is an odd function of k and B is an even function of k, 

with dB/dk = k dto/dk + k. Thus at A = ~/IT we have k = 0 and to = IT/~. For B we 

find at X = ~/IT, B = In (~/IT) + In p,, where p, = 0.924182203782. Using these 

values we obtain the long distance behavior of the infinite c correlation function, 

1 + 4cos 2t 3sin 2t 
32t2 - 16t3 

+ . . . . (17) 

The long distance behavior of G (0) has also been obtained by a different method by 

Vaidya and Tracy,7 who have shown that p, is related to Glaisher’s constant A by 

pal 
= nel/22-1/3A-6 Y which is in precise agreement with our numerical value. 

(Note that there are sign errors in Refs. 7 and 8 which may be corrected by making 

the replacement t -t t - m/2 in all the trigonemetric functions appearing in their 

formulas.) 

In order to compute the long distance behavior of the l/c term G (1) we need 

in addition the values dtO/dh, dk/dX, and dB/dX at A = 2/r. From 

k(X) = -; In (TX- 11, we have dk/dX = -1 while for dtO/dX and d@dX we have 

obtained the numerical results dtO/dX = -2.6566572 = -(y + 3 In 2) where y is Euler’s 

constant, and dB/d X = n/2 - 1.57079633 = 0. Combining these results, we obtain 

the long distance behavior of the two point function through order l/c: 

G(t) 
Gm = 

.e1/22-1/3A-6 
C 

1 + 2kF ~(y + 31n 2 - 
-ti+2kF/nc kF * l+Fc* + . . . (18) 

where, to this order, G(0) = (kF/n)(l + 2kF/vc). Note that we have interpreted a 

In t term in G(l) as the first order expansion of an asymptotic power t-v, where 

v = J/z - 2kF/rc + O(~/C~).‘~ 
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The results of this paper suggest that the connections between the operator 

formalism of the quantum inverse method and the treatment of Green’s functions 

by isomonodromic deformation theory go much deeper than our present level of 

understanding. We have found that the first two terms in the large c expansion (1) 

may be expressed in terms of Painlevg transcendents. However, our calculation of 

the 0(1/c) term made no direct use of monodromy arguments. Instead, this term 

was obtained by relating it to derivatives of the Fredholm minor (10) and resolvent 

(9) with respect to X and t. Reduction to Painlevg transcendents then followed the 

original analysis of Jimbo, et al. One could imagine a direct application of 

monodromy arguments, e.g. to the series (6) or to the operator formalism itself. 

Such an approach is presently under investigation. 

We would like to thank W.A. Bardeen, M. Fischler, J. 

for helpful conversations, and the Mathlab group at MIT for 
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